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Canavan disease (CD) is a rare autosomal recessively inherited leukodystrophy. The genetic defect related to the aspartoacylase gene.
The clinical characteristics of CD include hypotonia, macrocephaly, developmental delay, and visual impairment within the first year of
life. There is currently no cure for CD, however, new therapeutic modalities and gene therapy options are under investigation. Possible
mechanisms in the pathogenesis include astrocytic edema caused by N-acetyl-L-aspartic acid (NAA) serving as a water pump and
diminished acetate that is required for myelin synthesis. The current diagnostic approach to identify CD cases includes the demonstra-
tion of increased urinary NAA level, diminished or absence of enzyme activity in cultured skin fibroblasts, the loss of white matter
including U-fibers in magnetic resonance (MR) imaging, NAA peak in MR spectroscopy (MRS), and genetic testing, in which more than
70 mutations have been identified. Among these diagnostic approaches, the NAA peak detected with the use of MRS is highly charac-
teristic of CD and is the cornerstone in early diagnosis.
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INTRODUCTION
Canavan disease (CD) is a rare, autosomal recessive leukodystrophy that is characterized by spongy degeneration of
the white matter of the brain.1 Degenerating white matter is replaced by fluid that is named as vacuolating myelinop-
athy.2 CD is caused by a defect in the aspartoacylase (ASPA) gene, encoding the enzyme aspartoachylase, which has a
role in hydrolyzing N-acetyl-L-aspartic acid (NAA) and provides an acetyl group to oligodendrocytes for myelin
synthesis.3–6 A defect in aspartoachylase results in diminished myelin biosynthesis, dysmyelination, and brain edema.7

Although CD is prevalent among the Ashkenazi Jewish population, it also has an incidence of 1:200,000-1:400,000
among the non-Jewish population. The mutation responsible for CD among the two populations may differ.8

MECHANISM OF CD
NAA found only in neurons.8 NAA and NAA related dipeptide N-acetyl-aspartyl-glutamate (NAAG) is transported
from the cytoplasm to the extracellular space after synthesis within the neuron. Then NAA is taken up by oligodendro-
cytes using a dicarboxylic acid transporter and hydrolyzed by ASPA to aspartate and acetate. Acetates are then used
in the synthesis of fatty acids, and they are used for the production of myelin lipids.9

Decreased levels of NAA have been reported in many other neurodegenerative disorders, but elevated NAA is charac-
teristic of CD. The exact pathophysiologic mechanism causing white matter degeneration in the case of increased NAA
is yet unknown. Several hypotheses, however, have been established for possible pathophysiology.

CD is characterized by an increase in NAA in addition to a decrease in acetate and myelination.10–12 The loss of function
of ASPA causes a reduction in free acetate, while NAA is essential for the synthesis of myelin lipids that is crucial for
myelination in the central nervous system (CNS), particularly during the postnatal period.10 Impaired lipogenesis was
postulated to be the reason for spongiform degeneration in CD.13,14 In an ASPA knockout mice model, polar and nonpolar
lipid levels that are crucial for myelin synthesis were found to be lower when compared to the control group.13 Cerebro-
side and sulfatide reduction has also been reported in human and the rat CD model. Although a reduction in the lipids
level has been demonstrated, it may not have a direct relation with the severity of the disease, indicating that deficiency
of acetate may not be the only underlying pathology of CD.9
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NAA was suspected to serve as a water pump removing met-
abolic water from the mitochondria of neurons. Accumulation
of NAA results in astrocytic edema and formation of
vacuoles.15 In contrast, NAA was shown to be nontoxic even at
high concentrations. No changes were detected in NAA levels
in CD mice models following the introduction of the entire
ASPA gene.16,17 Aquaporin (AQP) 4 is a water transporter and
is the principal member of the AQP family in the CNS, which is
expressed by astrocytes.15,18,19 Clarner et al.20 demonstrated
that AQP4 was present throughout the cytoplasm in the CD
mice model and was located only in astrocytic end-feet in con-
trol mice. AQP4 was thought to be a new therapeutic target
for partial prevention of spongy degeneration through the reg-
ulation of astroglial water homeostasis.

It has been demonstrated that the elevation of oxidative stress
markers can cause the loss of oligodendrocytes and demyelin-
ation in the first few days after birth, and in turn, NAA was thought
to have a role in the metabolic integrity of oligodendrocytes.21

Additionally, nucleosomal histones are components of chroma-
tin, and their function is modulated by acetylation. A decrease
in acetate may disturb the expression of genes involved in the
maturation of oligodendrocytes.22 Previous findings do suggest
that immature oligodendrocytes have higher NAA levels than
mature oligodendrocytes or astrocytes. It indicates the impor-
tance of the function of ASPA in immature oligodendrocytes.23

ASPA plays an important role in the maturation of oligoden-
drocytes and also contributes to the pathophysiology of CD.24

Conversely, NAA may affect NMDA receptors in oligodendro-
cytes resulting in demyelination. The effect of NAA or NAAG
on the oligodendrocytes’ NMDA receptor is probably not a
major contributor to white matter damage.25

THE CLINICAL COURSE OF CD
Symptoms usually emerge after a period of normal develop-
ment, which occurs during the first few months of life, a rapid
course of progression of CD then occurs. The major symptoms
of CD include hypotonia, macrocephaly, feeding difficulties,
developmental delay, and visual impairment.26–28 Macroce-
phaly becomes evident after birth, usually during the first year
of life.9,26 The classical triad of the infantile CD in early child-
hood is hypotonia, macrocephaly, and head lag.9 There are,
however, a few cases that also report normocephaly or
microcephaly.29–32 Ataxia, poor sucking, and intellectual disabil-
ities have also been reported in CD patients.9

In the later stages of the disease, patients develop optic atro-
phy and spasticity. They usually become highly debilitated

including the loss of ambulation, difficulty in swallowing, and
seizures. A long term prognosis is still poor in infantile CD, and
patients are unlikely to survive beyond adolescence. Some
patients with milder forms may survive beyond the second
decade of life.9

The onset of mild/juvenile CD often begins after 5 years of age.
It is characterized by a mild developmental delay of speech
and motor skills, developmental delays may also be nonspecific,
and may not be immediately recognized.33,34 The adult-onset of
symptoms may resemble symptoms associated with the condi-
tion of multiple sclerosis.33 In addition, severe retinal degenera-
tion had also been reported in a patient with CD.35

DIAGNOSTIC TESTS FOR CD
Laboratory Tests
Diagnosis is based on neurological findings, laboratory tests,
cultured skin fibroblasts, neuroimaging, and genetic testing
collectively.

Laboratory findings, neuroimaging, and genetic testing are cru-
cial to distinguish CD from other neurodegenerative disorders.

Serum and urine NAA levels are elevated in patients with CD.
Excessive urinary NAA excretion was found to be almost 200
times higher than the amounts found in normal age-matched
individuals or obligate carriers.36

In a study including 17 CD patients, one patient had elevated
serum NAA levels while another six patients had high urine
NAA concentrations. In 10 CD patients of an infantile group,
neither serum nor urine samples had elevated NAA levels.37

Additionally, the urine concentrations of NAA and the severity
of their symptoms did not correlate in two siblings with CD.7

Therefore, urinary NAA excretion levels may not be completely
reliable criteria for the diagnosis of CD.

Cultured skin fibroblasts can be used to asses ASPA enzyme
activity. It can demonstrate low enzyme activity even in the
absence of a known ASPA gene mutation; however, it may not
be reliable because the activity may vary with culture condi-
tions.10,34,38 Aspartoachylase enzyme production is very low in
normal amniocytes and chorionic villi, which makes the detec-
tion of this enzyme unreliable in prenatal diagnosis.39

Neuroimaging
The MRI of the brain in CD patients demonstrates macroce-
phaly and a diffuse loss of white matter including subcortical
U-fibers and usually bilateral globus pallidus and thalamus
involvement. Putamen and caudate nucleus are spared, which
is very typical for CD. Cerebellum and brain stem tracts may
also be affected.2,40–43 Rarely multiple rounds or oval cystic
changes can be observed in white matter causing a honey-
comb appearance.44 In infantile CD, before characteristic find-
ings emerge, cytotoxic edema with restricted diffusion on brain
MRI may be observed.45 Multiple small cysts in white matter
predominantly in the posterior regions causing spongy appear-
ance in infantile CD patients have also been reported.46

In the case of mild/juvenile CD brain, MRI does not display
general white matter disease, instead of increased signal inten-
sities in the basal ganglia have been demonstrated in many
children with mild/juvenile CD.47–49 A case report of juvenile

Main Points

• Canavan disease (CD) is a rare genetically inherited dis-
order that is characterized by hypotonia, macrocephaly,
developmental delay and visual impairment within first
year of life.

• The NAA peak detected in MRS is highly characteristic of
CD and important in early diagnosis.

• Although more than 70 mutations had been described,
genetic testing anables genetic consultation.
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CD had been reported with distinct pons involvement in addi-
tion to caudate nucleus and basal ganglia without white
matter involvement.50 In another case report with mild clinical
presentation, diffuse cortical abnormality without significant
white matter involvement had been reported.51 Similar changes
have also been described in individuals with mitochondrial
diseases.47,52

MR spectroscopy (MRS) reveals marked elevations of the
NAA, which is characteristic of CD. Low choline (Cho)/creatine
(Cr) ratio, high myoinositol (mI)/Cr ratio, and high lactate levels
have also been observed in some CD patients.41 Diffusion-
weighted has demonstrated restricted diffusion with low
apparent diffusion coefficient (ADC) values in the early stages
of the disease probably due to myelin vacuolation, whereas
increased diffusion and high ADC values are demonstrated in
later stages of the disease.41,42

An example of MRI and MRS of a patient with CD is shown in
Figure 1.31 Elevation of NAA in the brain can be detected by
MRS before detecting an increase in the levels of NAA in the
urine, therefore making MRS a favorable early diagnostic tool
for CD.53

Genetic Testing
Genetic testing is not only important for the diagnosis of CD
but also critical for genetic counseling and prenatal testing. The
ASPA gene is located on the short arm of chromosome 17 at
17p13.2 location with an autosomal recessive inheritance
(OMIM 271900).54 More than 70 mutations have been described
to be associated with the ASPA gene thus far.3 Sistermans
et al.55 reported that two mutations account for about 98% of
the alleles of Ashkenazi Jewish patients known as E285A and
Y231X. In non-Jewish patients of European origin, the A305E
mutation accounts for 50% of alleles.

Patients with mild/juvenile CD are usually heterozygous with
one mild variant and one severe variant with residual ASPA
activity.47,51,56

A correlation among clinical presentation, enzyme activity, and
genotype for CD had been reported by Mendes et al.57

DIFFERENTIAL DIAGNOSIS OF CANAVAN DISEASE
Differential diagnosis of CD includes other neurodegenerative
disorders that are associated with a normal or large head
circumference. Alexander disease, Tay-Sachs Disease, Meta-
chromatic Lecodystrophy, and Glutaric acidemia type 1 may
be examples of differential diagnosis of CD. Also, viral infec-
tions, mitochondrial disorders, particularly Leigh syndrome, and
metabolic disorders such as nonketotic hyperglycinemia can
cause spongy degeneration of the brain. Cases of mild/juve-
nile CD may, therefore, be misdiagnosed as a mitochondrial
disorder.34

GENETIC COUNSELING
After identification of the pathogenic variant, high-risk relatives
are recommended to be tested. If a specific variant is not
known, prenatal diagnosis is based on the measurements of
NAA in amniotic fluid.34 The frequency of carriers among Ash-
kenazi Jewish populations ranges from 1:37 to 1:40. Population
screening is recommended for Ashkenazi Jewish individuals.58

Treatment
There is no specific treatment for CD, and the available
treatment is designed to increase the patients’ quality of life.
Adequate nutrition, hydration, and control of seizures with anti-
convulsants are recommended. Acetazolamide was demon-
strated to be beneficial by reducing intracranial pressure.59

However, new therapeutic approaches are under investigation.

CLINICAL TRIALS
Lithium citrate decreases NAA in the brain of patients with CD
and rat models. The introduction of lithium citrate supplied
better scores in gross motor function without statistical signifi-
cance and parental reports of improvement in alertness and
visual tracking when compared to baseline.60,61

FIGURE 1. MRI demonstrating delayed myelinization at corpus collosum, capsula interna genu, and posterior limb. Hyperintensity of both globus
pallidus, thalamus, dorsal aspect of brain stem, corticospinal tractus, and cerebellum. MRS demonstrating a prominent NAA (N-aspartyl aspar-
tate) peak on posterior deep white matter lobe.
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Glycerily triacetate treatment has been shown to increase ace-
tate levels in the brain of rats; however, the same treatment did
not demonstrate any improvement in patients with CD. As it
has no significant side effect or toxicity, this drug is now being
used in patients with CD. Early intervention of treatment was
postulated to be important.62,63

Topiramate has been reported to decline head growth velocity
in two subjects with CD.64

EXPERIMENTAL REPORTS
NAA, calcium acetate, ethanol, lipoic acid, lithium chloride, pyr-
azole and derivatives, sodium valproate, and triheptanoin
showed different results. They are candidates for future trials.65

In a recent mice study, a prolonged survival had been demon-
strated in a cell-based therapy using induced pluripotent stem
cells-derived neural progenitor cell and oligodendrocytes pro-
genitor cells.66

GENE THERAPY
Gene therapy aims to increase ASPA activity by insertion of the
ASPA gene. In mice and CD patients that have received gene
therapy treatment, demonstrated an increase in ASPA produc-
tion and activity.67,68 In turn, there was a reduction of NAA
levels in CNS and improved spongy degeneration in some
cases.69,70 However, those changes were transient in some of
the cases70 and confined to just a local area of the intracerebral
injection site.71,72 In an animal study, motor defects that were
improved have shown to relapse in the later stages of life.69

In a recent study, there has been a breakthrough in the treat-
ment of murine CD using a novel gene therapy approach.
Although many studies focus on oligodendrocytes, astrocytes
were hypothesized to be the origin of spongiform leucodystro-
phy in CD patients. The wild type gene had been inserted into
astrocytes in that study.73,74

Clinical applications of gene therapies were done by
adenovirus-associated virus (AAV).75 Additionally, neuroin-
flammatory responses after CNS-targeted delivery of AAV-
mediated gene therapy are a critical concern to establish the
immune suppressive strategies, clinical protocols, and so on.76

CONCLUSION
The infantile CD is one of the poor prognostic neurodegenera-
tive disorders. It starts within the first year of life. There is no
curative treatment available; however, new therapeutic
approaches including gene therapy are under investigation.
MR and MRS are noninvasive primary tests that can demon-
strate specific findings. Additionally, genetic testing is useful for
both definite diagnosis and genetic counseling. The demonstra-
tion of the absence or diminished enzyme activity becomes
important in cases with no known mutations. Early diagnosis is
important for the early implementation of available treatment
options in addition to genetic counseling.
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